Evaluation of artificial intelligence models for daily prediction of reference evapotranspiration using temperature, rainfall and relative humidity in a warm sub-humid environment
نویسندگان
چکیده
Accurate estimation of reference evapotranspiration is essential for agricultural management and water resources engineering applications. In the present study, ability precision three artificial intelligence (AI) models (i.e., Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy Inference System (ANFIS) Categorical Boosting (CatBoost)) were assessed estimating daily (ET0) using limited weather data from five locations in a warm sub-humid climate Mexico. The Penman–Monteith FAO-56 equation was used as target ET0 values. Three different input combinations investigated, namely: temperature-based (minimum maximum air temperature), rainfall-based temperature, temperature rainfall), relative humidity-based humidity). Extraterrestrial radiation values all combinations. AI compared with conventional Hargreaves–Samani (HS) model commonly to estimate when only records are available. goodness fit terms coefficient determination (R2), Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE) absolute (MAE). results showed that among evaluated, SVM outperformed ANFIS CatBoost modeling ET0. Further, influence humidity rainfall on performance investigated. analysis indicated significantly improved accuracy models. Finally, better response over HS method. can be an adequate alternative modeling.
منابع مشابه
evaluation of reference evapotranspiration models for a semiarid environment using lysimeter measurements
an accurate determination of evapotranspiration is required for many studies that involve estimation of the water balance. one methodology is the use of lysimeters. considering the semiarid climate of kerman province, in southeastern parts of iran, the only operating electronic weighing lysimeter in the country was used for calculating daily eto from april 2004 to march 2005 in three different ...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولTemperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different loc...
متن کاملhazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures
شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Italian journal of agrometeorology
سال: 2022
ISSN: ['2038-5625']
DOI: https://doi.org/10.36253/ijam-1373